Positivity of certain sums over Jacobi kernel polynomials
نویسنده
چکیده
We present a computer-assisted proof of positivity of sums over kernel polynomials for ultraspherical Jacobi polynomials.
منابع مشابه
Orthogonal Polynomials of Discrete Variable and Boundedness of Dirichlet Kernel
Abstract. For orthogonal polynomials defined by compact Jacobi matrix with exponential decay of the coefficients, precise properties of orthogonality measure is determined. This allows showing uniform boundedness of partial sums of orthogonal expansions with respect to L∞ norm, which generalize analogous results obtained for little qLegendre, little q-Jacobi and little q-Laguerre polynomials, b...
متن کاملMultiplicities of Character Values of Binary Sidel'nikov-Lempel-Cohn-Eastman Sequences
Binary Sidel’nikov-Lempel-Cohn-Eastman sequences (or SLCE sequences) over F2 have even period and almost perfect autocorrelation. However, the evaluation of the linear complexity of these sequences is really difficult. In this paper, we continue the study of [1]. We first express the multiple roots of character polynomials of SLCE sequences into certain kinds of Jacobi sums. Then by making use ...
متن کاملExtremal Positive Trigonometric Polynomials
There are various reasons for the interest in the problem of constructing nonnegative trigonometric polynomials. Among them are: Cesàro means and Gibbs’ phenomenon of the the Fourier series, approximation theory, univalent functions and polynomials, positive Jacobi polynomial sums, orthogonal polynomials on the unit circle, zero-free regions for the Riemann zeta-function, just to mention a few....
متن کاملSome Sums of Legendre and Jacobi Polynomials
We prove identities involving sums of Legendre and Jacobi polynomials. The identities are related to Green’s functions for powers of the invariant Laplacian and to the Minakshisundaram-Pleijel zeta function.
متن کاملThe coefficients of differentiated expansions of double and triple Jacobi polynomials
Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...
متن کامل